Matemática - Professor Nivaldo Galvão

Curiosidades Numéricas-Os três prédios mais altos de São Paulo

Você sabe quais são os 3 edifícios mais altos de São Paulo? 



1º Lugar : Edifício Mirante de São Paulo com 170m de altura,localizado em frente ao viaduto Santa Efigênia desde 1960.
















2ºLugar:Edifício Itália cujo nome oficial é Circolo Italiano com 165m de altura,localizado na Av.Ipiranga desde 1965.



















3ºlugar: Edifício Altino Arantes mais conhecido como Edifício do Banespa inaugurado em 1947 com altura de 161m ,durante mais de 10 anos foi o mais alto de São Paulo até ser superado pelo Mirante.

A Matemática das Bicicletas



Cada pedalada de um ciclista corresponde há uma distância equivalente ao comprimento da circunferência da roda dianteira, o que justifica o fato de os primeiros modelos terem uma enorme roda dianteira. Tal mecanismo, além de exigir muito esforço do ciclista, possuía limitações para o aumento de rendimento, uma vez que o raio da roda dianteira não poderia ser maior que o comprimento da perna do ciclista.O mecanismo de transmissão usado hoje em dia para melhorar o rendimento consiste em um conjunto de duas rodas dentadas ,uma delas fixa, com pinhão livre na roda traseira, que giram sob o comando de uma corrente.As rodas possuem número diferentes de dentes, por exemplo, 14 e 42. Como o pedal está acoplado à roda dentada maior, cada volta do pedal (um giro de 42 dentes) implica três voltas da roda dentada menor já que 3.14=42. Como a roda dentada menor é a responsável por transmitir o movimento ao conjunto, podemos dizer que a bicicleta avaliada avançará uma distância igual a três vezes o comprimento da sua roda traseira para cada pedalada completa.O comprimento da circunferência C de raio r (r é a metade do diâmetro) é calculado pela fórmula C=2. pi . r (para pi o valor aproximado 3,14)e sabendo que as rodas de uma bicicleta comum têm aproximadamente 70cm ou 0,70m de diâmetro, cada pedalada implica um deslocamento de 3 vezes o comprimento da circunferência da roda,ou seja,3 . 2 . 3,14 . 0,35=6,59m. Lembrando meus queridos que r é a metade do diâmetro da roda,como a roda tem aproximadamente 0,70m,logo metade é 0,35.
Um abraço meus queridos!!!


Prof.Nivaldo Galvão

A Matemática e a Informática

Números Binários

O sistema binário de computação já era conhecido na China uns 3000 a.C., de acordo com os manuscritos da época. Quarenta e seis séculos depois, Leibniz redescobre o sistema binário.Este sistema de numeração binário é muito importante, na medida em que, modernamente, é de largo alcance por ser utilizado nas calculadoras eletrônicas, computadores e nas estruturas que envolvem relações binárias. Este sistema pode ser chamado sistema de base dois, binário ou dual, o qual utiliza apenas dois algarismos, o 0 e o 1.

Vamos aprender a transformar um número no sistema decimal para o sistema binário.

Devemos fazer a divisão( sem usar a calculadora) do número por 2 (sempre dois,pois o sistema é binário)o resto será 0 ou 1,devemos fazer essa divisão até obter quociente 1.

Exemplo.Represente o número 45 no sistema binário:

45:2=22 resto 1

22:2=11 resto 0

11:2=5 resto 1

5:2= 2 resto 1

2:2= 1 resto 0

O número binário será 1 mais todos os restos das divisões de baixo para cima,ou seja, 0, 1,1,0 e 1.

Portanto:

45→101101

Outro exemplo:

Transforme o número 141 no sistema binário e faça o processo inverso.

141:2=70 resto 1

70 : 2 = 35 resto 0

35 : 2= 17 resto 1

17 : 2 = 8 resto 1

8 : 2 = 4 resto 0

4 : 2 = 2 resto 0

2 : 2 = 1 resto 0

Então 141→ 10001101

Agora vamos fazer o processo inverso:

O algarismo da unidade do número binário será multiplicado por 2 elevado a zero,o da dezena será multiplicado por 2 elevado a 1,o da centena por 2 elevado ao quadrado e assim por diante.

Acompanhe:

1.2°=1.1=1

0.2¹=0.2=0

1.2²=1.4=4

1.2³=1.8=8

0.2^4=0.16=0

0.2^5=0.32=0

0.2^6=0.64=0

1.2^7=1.128=128

Somando os resultados 128+0+0+0+8+4+0+1=141 



Um abraço!!!

Prof.Nivaldo Galvão